E=mc2
E=mc2
c=pmsqrta2+b2
x>y
f(x)=x2
alpha=sqrt1−e2
(sqrt3x−1+(1+x)2)
sin(alpha)theta=sum_i=0n(xi+cos(f))
dfrac−bpmsqrtb2−4ac2a
displaystylefrac1Bigl(sqrtphisqrt5−phiBigr)efrac25pi=1+frace−2pi1+frace−4pi1+frace−6pi1+frace−8pi1+cdots
displaystyleleft(sum_k=1na_kb_kright)2leqleft(sum_k=1na_k2right)left(sum_k=1nb_k2right)
a2
a2+2
a_2
x_23
x_23
10108
a_i,j
_nP_k
c=pmsqrta2+b2
frac12=0.5
dfrackk−1=0.5
dbinomnkbinomnk
oint_Cx3,dx+4y2,dy
bigcap_1npbigcup_1kp
eipi+1=0
left(frac12right)
x_1,2=frac−bpmsqrtcolorRedb2−4ac2a
colorBluex2+colorYellowOrange2x−colorOliveGreen1
textstylesum_k=1Nk2
binomnk
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+cdots
sum_k=1Nk2
textstylesum_k=1Nk2
prod_i=1Nx_i
textstyleprod_i=1Nx_i
coprod_i=1Nx_i
textstylecoprod_i=1Nx_i
int_13frace3/xx2,dx
int_Cx3,dx+4y2,dy
_12!Omega_34
f(x)=∫−∞∞f^(ξ)e2πiξxdξ
(∑_k=1na_kb_k)2≤(∑_k=1na_k2)(∑_k=1nb_k2)
1−2121[1−(21)n]=sn
(ϕ5−ϕ)e52π1=1+1+1+1+1+⋯e−8πe−6πe−4πe−2π
f(x)=∫−∞∞f^(ξ)e2πiξxdξ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
| $$ $$E=mc^2$$ $$E=mc^2$$ $$c = \\pm\\sqrt{a^2 + b^2}$$ $$x > y$$ $$f(x) = x^2$$ $$\\alpha = \\sqrt{1-e^2}$$ $$(\\sqrt{3x-1}+(1+x)^2)$$ $$\\sin(\\alpha)^{\\theta}=\\sum\_{i=0}^{n}(x^i + \\cos(f))$$ $$\\dfrac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$$ $$\\displaystyle \\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} = 1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}} {1+\\frac{e^{-8\\pi}} {1+\\cdots} } } }$$ $$\\displaystyle \\left( \\sum\_{k=1}^n a\_k b\_k \\right)^2 \\leq \\left( \\sum\_{k=1}^n a\_k^2 \\right) \\left( \\sum\_{k=1}^n b\_k^2 \\right)$$ $$a^2$$ $$a^{2+2}$$ $$a\_2$$ $${x\_2}^3$$ $$x\_2^3$$ $$10^{10^{8}}$$ $$a\_{i,j}$$ $$\_nP\_k$$ $$c = \\pm\\sqrt{a^2 + b^2}$$ $$\\frac{1}{2}=0.5$$ $$\\dfrac{k}{k-1} = 0.5$$ $$\\dbinom{n}{k} \\binom{n}{k}$$ $$\\oint\_C x^3, dx + 4y^2, dy$$ $$\\bigcap\_1^n p \\bigcup\_1^k p$$ $$e^{i \\pi} + 1 = 0$$ $$\\left ( \\frac{1}{2} \\right )$$ $$x\_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}$$ $${\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}$$ $$\\textstyle \\sum\_{k=1}^N k^2$$ $$\\binom{n}{k}$$ $$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots$$ $$\\sum\_{k=1}^N k^2$$ $$\\textstyle \\sum\_{k=1}^N k^2$$ $$\\prod\_{i=1}^N x\_i$$ $$\\textstyle \\prod\_{i=1}^N x\_i$$ $$\\coprod\_{i=1}^N x\_i$$ $$\\textstyle \\coprod\_{i=1}^N x\_i$$ $$\\int\_{1}^{3}\\frac{e^3/x}{x^2}, dx$$ $$\\int\_C x^3, dx + 4y^2, dy$$ $${}\_1^2!\\Omega\_3^4$$ $$ f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi $$ $$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } { 1-\tfrac{1}{2} } = s_n$$ $$\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$ $$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$
|